Overview of Invasive Carp Research at UA-Pine Bluff

Funded in part by ANS Small-Grants Program

Michael Eggleton, Cooper Barshinger, Glen Jackson, Joseph Kaiser, Cody Salzmann, Shannon Smith, Derek Owens & Jon Spurgeon

University of Arkansas at Pine Bluff
Department of Aquaculture and Fisheries

Bigheaded carps, i.e., "invasive carps"

 Group includes two species – Bighead Carp (Hypophthalmichthys nobilis) and Silver Carp (H. molitrix)

Silver Carp

Hypophthalmichthys molitrix

SILVER CARP EXPANSION AND IMPACTS

• First imported to U.S. in 1970s – many accidental and intentional releases have occurred time

Highly planktivorous – compete directly with adults of some native fishes and

juveniles of many species

Broad tolerance for environmental factors

- Altered food web interactions
- Declines in native fish condition
- Induced shift in native fish assemblages

Suspected declines in sport and/or commercial fisheries

ANS Small Grants Program

Funded several prior grants at UA-Pine Bluff – both directly and indirectly...

- 1. Invasive carp effects on fish assemblages in lower White River oxbow lakes (Kaiser & Salzmann 2017-2019)
- Silver Carp population dynamics in the LMR basin (LMR and four eastern Arkansas rivers) (Barshinger 2019-2020)
- 3. Invasive carp effects on fish assemblages of LMR secondary channels (Jackson 2021-2023)
- 4. Silver Carp river of origin determination using otolith microchemistry techniques (Barshinger 2019)

1. Invasive carps in lower White River

- Silver Carp historically rare but well established by about 2010
- Historical study conducted during 2002 only two Silver Carp collected
- Multiple-gear fish sampling conducted to thoroughly characterize fish assemblages in 15 oxbow lakes in WRNWR
- Multivariate analyses conducted on assemblage data
- Study emphasized pre-carp (2002) vs.
 post-carp (2017) comparisons examined fish assemblage shifts and species losses/gains....

Multi-Gear Fish Collections

Done in replicate in all study lakes during July-August and October-November 2017 ("post-carp" period) – design identical to Lubinski (2002, "pre-carp" period)

Comparing pre-carp & post-carp assemblages...

2017 (post-carp)	Electrofishing	Mini-Fyke	Gillnetting	Overall
Fishes collected	10,671	13,627	488	24,786
Number of species	58	48	28	67
Species diversity (H')	2.88	1.62	2.48	2.63
Species evenness	0.71	0.42	0.74	0.57
Species dominance	0.90	0.62	0.89	0.85
2002 (pre-carp)	Electrofishing	Mini-Fyke	Gillnetting	Overall
2002 (pre-carp) Fishes collected	Electrofishing 7,659	Mini-Fyke 33,893	Gillnetting 527	Overall 42,065
		•		
Fishes collected	7,659	33,893	527	42,065
Fishes collected Number of species	7,659 47	33,893 44	527 24	42,065 <i>64</i>

Buck02

Discussion

- Effects and/or impacts of Silver Carp invasions on native fishes and fisheries is vital to fisheries management on a [nearly] national scale...
- >8 species not found in 2017 compared to historical datasets, though 10 new species were collected in 2017
 - All species lost and gained were historically rare possibly due to gear and/or seasonal differences
- ➤ MRPP group tests indicated significant shifts in fish assemblage structures between 2002 and 2017
- Two of the three gears used suggested strong structural differences
 - Differences less with mini-fykes, which is a littoral-zone gear

Discussion

Cannot unequivocally state that observed responses are entirely due to carps

> Frequent structural shifts could be common in these systems Entire dataset was collected during only 2 years of a 16-year timespan

➤ However, observed trends may suggest causation — Silver Carp establishment is the most pervasive change to occur in these systems during last two decades

Carp abundance alone may be the entire story – abundances may interact with other factors

➤ Research allows for development of further hypotheses on carp effects on native fishes — possibly the basis for future experimental work

2. Silver Carp population dynamics study

- Most Silver Carp population dynamics work limited to upper Mississippi River basin
- Silver Carp are being assessed in the LMR basin, though vital population rates (e.g., growth, mortality, recruitment, etc.) have been quantified for very few populations
- Fish collected from multiple sites in five river systems during 2019-2020 target sample size of 100 fish/river wetlands Barren
- Once captured, fish were sexed, measured for length, weight, and lapilli otoliths were extracted in the field
- Aged in lab read double-blind both whole-view and sectioned, with sectioned readings considered true age

QUESTION/PURPOSE

- How much do Silver Carp population vital rates differ among Arkansas river systems?
- How do these rates compare to other U.S. populations?

Measure	Method
Condition	Fulton K, W _r , K _n , and W-L equation
Size structure	PSD-P, PSD-M, and PSD-T measures
Growth	von Bertalanffy growth models
Back-calculated growth	Annual growth increment
Mortality	Weighted catch curves (using ages 5-12)
Recruitment	Recruitment variation index (RVI)

Jonesboro White River Legend Fish Sample USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMan contributors, and the GIS User Community

STUDY RIVERS

- Lower Mississippi River (AR-TN-MS-LA)
- Arkansas River (AR)
- White River (AR)
- Cache River (AR)
- St. Francis River (AR)

RESULTS

- 552 carp collected between June 2019 and November 2020
- Some specimens provided by third parties
- Aging results...

- 81% of disagreements were by only 1 year
- Disagreements equally likely with younger and older carp
- Between-reader discrepancies mostly resolved

MEAN SIZE

- 856 (± 104) mm
- 839 (± 55) mm
- 773 (± 44) mm
- 719 (± 55) mm
- 804 (± 61) mm

AGE STRUCTURE

- Ages 3-15 were collected
- No age-1 or age-2
- Mean age 7.0 ±
 2.2 years overall
- Mean ages ranged
 - 7.8 ± 2.6 (Arkansas)
 - •6.2 ± 1.9 (White)
- Ages 5-12 comprised 90% of catch

VON BERTALANFFY GROWTH MODELS

VON BERTALANFFY GROWTH MODELS

		K (95% CL)	t _o (95% CL)
47 8	01 (775-826) bc	0.266 (0.223-0.308) ab	-0.44 (-0.790.09) ab
11 9	964 (940-988) a	0.210 (0.188-0.234) b	-0.61 (-0.870.36) ab
99 7	780 (757-804) c	0.369 (0.302-0.436) a	-0.11 (-0.430.21) a
95 8	335 (821-849) b	0.312 (0.283-0.340) ab	-0.25 (-0.420.07) a
00 7	82 (717-847) bc	0.222 (0.145-0.299) b	-0.73 (-1.510.54) b
		0.194 (0.149-0.238)	-0.87 (-1.470.28)
9	11 9 9 7 95 8 90 7	964 (940-988) a 9780 (757-804) c 95 835 (821-849) b 9782 (717-847) bc	964 (940-988) a 0.210 (0.188-0.234) b 9780 (757-804) c 0.369 (0.302-0.436) a 95 835 (821-849) b 0.312 (0.283-0.340) ab 9780 (717-847) bc 0.222 (0.145-0.299) b 9880 0.194 (0.149-0.238)

ANNUAL MORTALITY AND RECRUITMENT

AGES 5-12 ONLY

River	N*	A (95% CL)	Theoretical maximum age (t _{max} , years)	RVI (ages 5-12)
LMR	137	29% (14-41%)	15.8	0.349
Arkansas	98	12% (1-22%)	27.5	0.449
White	82	36% (14-49%)	12.7	0.200
Cache	87	32% (9-47%)	13.5	0.347
St. Francis	91	29% (16-39%)	14.6	0.337
Overall	495*	28% (18-35%)	20.5	0.703
*sample size represents only fish aged 5-12 years				

SILVER CARP IN ARKANSAS RIVERS

- Very healthy and viable stable recruitment in all rivers
- Arkansas River consistently had largest sizes, lowest mortality, and most stable recruitment...
- This despite being a serial L&D system with many barriers to migration
- Not finding juvenile or young (ages 1-3) carps anywhere
- However, no reason to not think all 5 rivers will continue to have healthy popns for the foreseeable future

HOW DO ARKANSAS SILVER CARP COMPARE NATIONALLY?

- Arkansas rivers shared characteristics with other U.S. popns...
- Upper Mississippi River (IL-IA-MO)
 - Greater mean lengths & L_∞
 - Stable recruitment Cox et al. (2020)
- Illinois (IL) and Wabash River (IL-IN)
 - Smaller mean lengths & L_∞
 - Stable recruitment Stuck et al. (2015)
- Missouri River tributaries (SD)
 - Smaller sizes & lower growth
 - Recruitment less stable Hayer et al. (2014)

- Tennessee & Cumberland rivers (TN-KY)
 - Greater mean lengths & L∞
 - Recruitment less stable
 Ridgway & Bettoli (2017)

3. Invasive carp effects on LMR fishes

- Historical study conducted during 1990s at seven LMR secondary channel locations spanning from KY-MO to MS-LA
- Emphasized five different secondary channel and adjacent main-stem macrohabitats
- No Silver Carp collected over 3 years of sa
 The same of same
- Study emphasizes pre-carp (1990s) vs. post-carp (2021-2023) comparisons – will examine fish assemblage shifts and species losses/gains....study only recently initiated

Results - NMS

- Differences
 observed in
 assemblage
 structure
 between 1990s
 and 2021
- Dataset greatly imbalanced due to 2021 alone being ordinated against 3 other years (1995-1997)

Results – NMS

- Site differences appear related to high SVCP abundances (axis-1 r=0.874)
- BLSK, LNGR, SNGR, SJHR
 & SMBF also positively correlated to axis 1
 (r>0.560)
- CARP, FWDM, GDEY,
 RVCS & CNCF negatively
 correlated to axis-1
 (r<-0.225)
- More to come in 2022-2023

4. Silver Carp otolith microchemistry study

- Knowing where Silver Carp spawn (even approximately) would be useful for fisheries managers
- Significance of tributary systems in life histories (e.g., spawning and reproduction) within the Lower Mississippi River (LMR) basin is totally unknown
- Microchemistry techniques could prove useful in determining where carps spawn, especially considering the difficulty in collecting juvenile carps
- Ability to link Silver Carp to their natal rivers would be valuable towards better understanding of their life histories and developing management plans

OTOLITH MICROCHEMISTRY

- Otoliths are inert following annual accumulation of the CaCO₃ matrix (Campana & Nelson 1985)
- Trace elements become imprinted in otoliths from elemental concentrations in the surrounding waters at birth (Elsdon & Gillanders 2004)
- Water chemistry differences among spawning locations remain persistent and can be used to determine the river of origin

SILVER CARP MICROCHEMISTRY

- Lapilli otoliths are advantageous for microchemistry due to their aragonite crystalline structure (Norman & Whitledge 2015)
- Otoliths have greater affinities for:
 - Strontium (Sr)
 - Barium (Ba)
 - Magnesium (Mg)
- Norman & Whitledge (2015)
 identified natal origin and recent
 river inhabitance of bigheaded
 carps in the Illinois River basin

PREPARING OTOLITHS

- Otoliths were set in epoxy with sulcus upward
- Otoliths sectioned with an ISOMET low-speed precision saw
- Otoliths sanded and polished using lapping film, and affixed to glass slides for reading

ANALYZING OTOLITHS

- Otoliths were ablated using high-resolution ICPMS
- Laser ablated a transect across the otolith core in order to measure Sr, Ba, and Ca concentrations
- One spot ablation was done to measure the core

AMONG-RIVER DIFFERENCES IN WATER Sr:Ca

AMONG-RIVER DIFFERENCES IN WATER Sr:Ca

AMONG-RIVER DIFFERENCES IN WATER Ba:Ca

AMONG-RIVER DIFFERENCES IN WATER Ba:Ca

WATER CHEMISTRY SUMMARY

Three rivers appeared more distinct

AMONG-RIVER DIFFERENCES IN OTOLITH Sr (ppm)

MODEL PREDICTION

NATAL ORIGIN PREDICTIONS

Predicted River Origin

	Arkansas	Mississippi	White
Arkansas (n=74)	17 (23%)	26 (35%)	31 (42%)
Mississippi (n=39)	9 (23%)	15 (38%)	15 (38%)
White (n=74)	15 (20%)	23 (31%)	36 (49%)
Total (n=187)	41 (22%)	64 (34%)	82 (44%)

DISCUSSION

• Mississippi (34%) and White (44%) rivers appeared to be the most common natal origin for sampled Silver Carps...

Currently little information of recruitment in these rivers

 Arkansas River does not appear to be a major spawning location for Silver Carps...

River main-stem may be more vital for seasonal feeding and growth

- Smaller river systems may be more difficult to distinguish from larger systems – when more river systems were included, model accuracy decreased
- Additional analyses using otolith Sr:Ca and Ba:Ca ratios to determine natal origin currently being examined

Acknowledgements

- University of Arkansas at Pine Bluff
- U.S. Fish and Wildlife Service WRNWR
- USFWS-ANS Small Grants Program
- Angie Rodgers USFWS/LMRCC
- James Ballard Gulf States Marine Fisheries
 Commission
- Jimmy Barnett Arkansas Game & Fish Commission
- Chad Washington Mississippi Dept. Wildlife Fisheries & Parks

